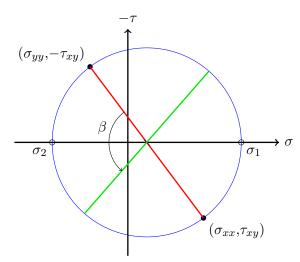
Cercle de Mohr

Certains exercices ci-dessous sont répétés des séries précédentes. Vous vous concentrerez sur l'interpretation graphique (cercle de Mohr).

Conventions utilisées pour le cercle de Mohr

Pour tracer un cercle de Mohr en 2D correspondant à un tenseur des contraintes donné, commencez par dessiner un système de coordonnées avec σ sur l'axe des abscisses et $-\tau$ sur l'axe des ordonnées. Placez les points (σ_{xx},τ_{xy}) et $(\sigma_{yy},-\tau_{xy})$ et reliezles avec un segment (en rouge). Le point d'intersection entre ce segment et l'axe σ est le centre d'un cercle (en bleu) passant par les deux autres points. Les contraintes principales σ_1 et σ_2 se trouvent aux points d'intersection entre le cercle et l'axe des abscisses, avec $\sigma_1 > \sigma_2$. Pour effectuer une rotation du système de coordonnées d'un angle α , il faut tourner le segment (rouge) d'un angle $\beta = 2\alpha$ (donnant le segment vert). Les angles sont définis dans le sens anti-horaire (Notez que, bien que contre-intuitif, si l'axe des ordonnées n'était pas inversé, les angles auraient dûs être définis dans le sens horaire).



Exercice 1:

L'état de contrainte dans lequel les seules composantes de la contrainte non nulles sont $\sigma_{12} = \sigma_{21}$ est appelé cisaillement simple. Autrement dit le tenseur des contraintes a la forme :

$$\underline{\sigma} = \begin{bmatrix} 0 & \tau \\ \tau & 0 \end{bmatrix} \tag{1}$$

- 1. Trouvez les contraintes et directions principales.
- 2. Trouvez la contrainte de cisaillement maximale et la direction sur laquelle elle agit.

Exercice 2:

L'état de contrainte dans lequel seules les trois composantes normales sont non nulles est appelé état de contrainte tri-axial. Autrement dit, on considère une contrainte de la forme :

$$\underline{\sigma} = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}$$
 (2)

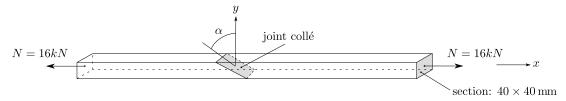
On suppose que $\sigma_1 > \sigma_2 > \sigma_3$.

Exprimer la contrainte de cisaillement maximale et déterminer sur quel plan elle agit.

Exercice 3 : Cercle de Mohr

Série 5, exercice 7

Un barreau de section carrée 40 mm \times 40 mm est soumis à une force de traction N=16 kN. Déterminer graphiquement (cercle de Mohr) l'orientation α que l'on doit donner à un joint collé pour que la contrainte de traction n'y excède pas 2 N/mm²; quelle est alors la contrainte tangentielle dans le joint?

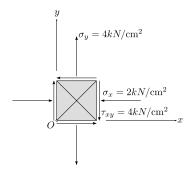


Exercice 4: Etat plan de contrainte

Un état plan de contrainte en un point O d'un solide est défini par la valeur des contraintes σ_x , σ_y et τ_{xy} agissant sur les facettes d'un petit élément carré. En procédant graphiquement (cercle de Mohr), transformer cet état en l'état de contrainte

- 1. principal,
- 2. selon les diagonales du carré.

Pour chacun des deux états, dessiner les résultats sur un petit élément carré correctement orienté.



Exercice 5 : Cercle de Mohr 3D

Série 5, exercice 6

Les composantes cartésiennes du tenseur contraintes σ_{ij} au point 0 d'un solide sont

$$\begin{bmatrix} -4 & \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & -1 & 3 \\ -\sqrt{2} & 3 & -1 \end{bmatrix} [N/mm^2]$$

Trouver (série 5, exercice 2):

- 1. les contraintes normales principales,
- 2. la matrice des cosinus directeurs des axes principaux,
- 3. la contrainte normale moyenne,
- 4. le tenseur déviateur,
- 5. la contrainte tangentielle maximale,

et dessiner le tricercle de Mohr (nouveau).

Exercice 6:

En un point d'un problème plan de déformation, les déformations valent

$$\varepsilon_x = 450 \cdot 10^{-6} \qquad \varepsilon_y = 90 \cdot 10^{-6} \qquad \gamma_{xy} = 720 \cdot 10^{-6}$$
 (3)

En utilisant le cercle de Mohr, trouver les directions pour lesquelles :

- 1. la déformation normale est nulle
- 2. le glissement est nul
- 3. le glissement est maximal

Exercice 7:

Série 4, exercice 2

Les composantes du tenseur des déformations en un point d'un milieu continu s'expriment :

$$\varepsilon_{11} = \varepsilon_{22} = \varepsilon_{12} = k, \qquad \varepsilon_{33} = 3k, \qquad \varepsilon_{13} = \varepsilon_{23} = 0 \qquad k > 0$$
(4)

Peut-on trouver une direction pour laquelle la déformation est négative? Utiliser le cercle de Mohr.

Exercice 8: Tenseur des contraintes 1

On suppose que le vecteur de la force de gravité est égal à $\underline{b} = -\rho g\underline{e_3}$, où g est le module de l'accélération de la pesanteur à la surface de la terre et ρ la masse volumique du matériau. On considère le tenseur des contraintes suivant :

$$\underline{\sigma} = \alpha \begin{bmatrix} x_2 & -x_3 & 0 \\ -x_3 & 0 & -x_2 \\ 0 & -x_2 & \beta(x_1, x_2, x_3) \end{bmatrix}$$
 (5)

Déterminer l'expression de $\beta(x_1, x_2, x_3)$ de façon à ce que $\underline{\sigma}$ satisfasse les équations d'équilibre.

Exercice 9: Tenseur des contraintes 2

Soit un matériau occupant un demi-espace infini où $x_2 \ge x_1$. L'état de contrainte dans le matériau est le suivant :

$$\underline{\sigma} = \alpha \begin{bmatrix} Ax_2 & x_1 & 0 \\ x_1 & Bx_1 + Cx_2 & 0 \\ 0 & 0 & \frac{1}{2}(Bx_1 + (A+C)x_2) \end{bmatrix}$$
 (6)

où A, B et C sont des constantes.

- 1. Déterminer la valeur de C de façon à ce que $\underline{\sigma}$ satisfasse les équations d'équilibre en l'absence de force de gravité.
- 2. Le vecteur traction est nul sur le plan $x_1 x_2 = 0$. Déterminer les valeurs de A et de B.

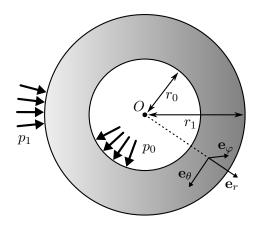
Exercice 10: Exercice 3 de l'examen 2014

On considère le réservoir sphérique de centre O de rayons intérieur et extérieur respectivement r_0 et r_1 (voir figure 1) dans un système de coordonnées sphériques orthonormées de centre O, les données sont les suivantes :

- les forces de volume sont nulles;
- les conditions aux limites sont exclusivement des efforts surfaciques et s'énoncent comme suit :
 - pression normale uniforme égale à p_0 exercée à l'intérieur de la sphère (soit en $r=r_0$);
 - pression normale uniforme égale à p_1 exercée à l'extérieur de la sphère (soit en $r=r_1$).
- le champ de contraintes en coordonnées sphériques (voir figure 2) est de la forme :

$$\sigma_{rr} = A - \frac{2B}{r^3}, \ \sigma_{\theta\theta} = \sigma_{\phi\phi} = A + \frac{B}{r^3}$$

$$\sigma_{\theta\phi} = \sigma_{r\phi} = \sigma_{r\theta} = 0$$
(7)



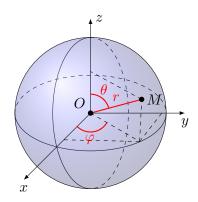


Figure 1 – Section de l'enveloppe sphérique

FIGURE 2 – Coordonnées sphériques

— RAPPEL : la divergence d'un tenseur en coordonnées sphériques est

$$\operatorname{div} \mathbf{T} = \left(\frac{\partial T_{rr}}{\partial r} + \frac{1}{r} \frac{\partial T_{r\theta}}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial T_{r\varphi}}{\partial \varphi} + \frac{1}{r} \left(2T_{rr} - T_{\theta\theta} - T_{\varphi\varphi} + \frac{T_{r\theta}}{\tan \theta} \right) \right) \mathbf{e}_{r}$$

$$+ \left(\frac{\partial T_{\theta r}}{\partial r} + \frac{1}{r} \frac{\partial T_{\theta\theta}}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial T_{\theta\varphi}}{\partial \varphi} + \frac{1}{r} \left(\frac{T_{\theta\theta} - T_{\varphi\varphi}}{\tan \theta} + 3T_{r\theta} \right) \right) \mathbf{e}_{\theta}$$

$$+ \left(\frac{\partial T_{\varphi r}}{\partial r} + \frac{1}{r} \frac{\partial T_{\varphi\theta}}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial T_{\varphi\varphi}}{\partial \varphi} + \frac{1}{r} \left(3T_{r\varphi} + \frac{2T_{\theta\varphi}}{\tan \theta} \right) \right) \mathbf{e}_{\varphi}$$

- 1. Vérifier que le champ de contraintes satisfait les équations d'équilibre.
- 2. Déterminer le vecteur contrainte sur une surface sphérique de rayon a.
- 3. Déterminer A et B en fonction de p_0 pour $p_1=0$.